\(\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{15}+\frac{1}{9}\) or \(\quad \mathrm{R}_{\mathrm{eq}}=\frac{(15)(9)}{15+9}=\frac{135}{24}=5.62\, \Omega\)
Current through circuit i \(=\frac{10}{5.62}=1.78 \mathrm{\,A}\)
If current through upper and lower branches of the network are \(\mathrm{i}_{1}\) and \(\mathrm{i}_{2}\), then according to Kirchoff's function law \(-\)
\(\mathrm{i}_{1}+\mathrm{i}_{2}=1.78 \mathrm{\,A}\)
and \(\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)+\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}\right)=\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{d}}\right)+\left(\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{c}}\right)\)
or \(\quad \mathrm{i}_{1}(5+10)^{3 / 4}\, \mathrm{i}_{2}(3.0+6.0)\) or \((15) \mathrm{i}_{1}=(9.0) \mathrm{i}_{2}\)
On solving, we get \(-\) \(\mathrm{i}_{1}=0.67 \mathrm{\,A}\) and \(\mathrm{i}_{2}=1.1 \mathrm{\,A}\)