\(\overrightarrow{ r }_{1}=5 \hat{ i }+5 \sqrt{3} \hat{ j } \& \overrightarrow{ r }_{2}=-5 \hat{ i }+5 \sqrt{3} \hat{j}\)
Torque about \('O'\)
\(\vec{\tau}_{0}=\overrightarrow{ r }_{1} \times \overrightarrow{ F }=(-15-20 \sqrt{3}) \hat{ k }=(15+20 \sqrt{3})(-\hat{ k })\)
Torque about \('Q'\)
\(\vec{\tau}_{Q}=\overrightarrow{ r }_{2} \times \overrightarrow{ F }=(-15+20 \sqrt{3}) \hat{ k }=(15-20 \sqrt{3})(-\hat{ k })\)