\(k x^{2}=m v^{2}\)
\(V=x \sqrt{\frac{k}{m}}=0.05 \sqrt{\frac{100}{1}}=0.05 \times 10 \sqrt{10}\)
\(v=0.5 \sqrt{10}\)
From \(h=\frac{1}{2} g t^{2}\)
\(t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \times 2}{10}}=\frac{2}{\sqrt{10}}\)
\(\therefore d=v t=0.5 \sqrt{10} \times \frac{2}{\sqrt{10}}=1\, {m}\)