\({\text{u}} = - 5\,{\text{cm}},\) \({\text{f}} = {\text{m}} - \frac{{\text{R}}}{2}\) \( = - 20\,{\text{cm}}\)
\(\frac{1}{v} + \frac{1}{u} = \frac{1}{f}\) ; \(\boxed{{v_1} = + \frac{{20}}{3}\,\,cm}\)
This image will act as object for light getting refracted at water surface.
So, object distance \(d=5+\frac{20}{3}=\frac{35}{3} \,\mathrm{cm}\)
Below water surface.
After refraction, final image is at
\({d^\prime } = d\left( {\frac{{{\mu _2}}}{{{\mu _1}}}} \right)\) \( = \left( {\frac{{35}}{3}} \right)\left( {\frac{1}{{4/3}}} \right)\)
\(=\frac{35}{4}=8.75 \,\mathrm{cm}\)
\( \approx 8.8\, \mathrm{cm}\)