Points at same height have same pressure, points with height difference say ' \(h\) ' will have difference of \(\rho g h\).
Let radius of circle is \(r\)
\(p_A=p_0+h \rho g\)
\(p_B=p_D=p_0+(h+r) \rho g\)
\(p_C=p_0+(h+2 r) \rho g\)
Then,
\(p_C+p_A=\left[p_0+(h+2 r) \rho g\right]-\left[p_0+h \rho g\right]\)
\(=p_0+h \rho g+2 r \rho g+p_0+h \rho g\)
\(=2\left[p_0+(h+r) \rho g\right]\)
\(\frac{p_C+p_A}{2}=p_0+(h+r) \rho g\)
\(\frac{p_C+p_A}{2}=p_B=p_D\)
i.e., option \((a), (b)\) and \((d)\) gives correct statement but incorrect statement is \((c)\)