$(\left.g=10 \,m / s ^{2}\right)$
\(mv l=\frac{ Ml ^{2}}{3} \omega+ m l^{2} \omega\)
\(\Rightarrow \omega=\frac{1 \times 6 \times 1}{\frac{2}{3}+1}=\frac{18}{5}\)
Now using energy consevation
\(\frac{1}{2}\left( M \frac{l^{2}}{3}\right) \omega^{2}+\frac{1}{2}\left( m l^{2}\right) \omega^{2}\)
\(=( m + M ) r _{ cm }(1-\cos \theta)\)
\(=( m + M )\left(\frac{ m l+\frac{ M l}{2}}{ m + M }\right) g (1-\cos \theta)\)
\(\frac{5}{6} \times\left(\frac{18}{5}\right)^{2}=20(1-\cos \theta)\)
\(\Rightarrow 1-\cos \theta=\frac{18}{5} \times \frac{3}{20}\)
\(\cos \theta=1-\frac{27}{50}\)
\(\cos \theta=\frac{23}{50} \Rightarrow \theta \simeq 63^{\circ}\)