\(d = r\sin {45^o} = \frac{r}{{\sqrt 2 }}\)
\(B = \frac{{{\mu _0}}}{{4\pi }}.\frac{i}{{(r/\sqrt 2 )}}(\sin {45^o} + \sin {90^o})\)
\( = \frac{{{\mu _0}}}{{4\pi }}.\frac{i}{r}(\sqrt 2 + 1)\)
\({B_{net}} = 2 \times \frac{{{\mu _0}}}{{4\pi }}.\frac{i}{r}(\sqrt 2 + 1) = \frac{{{\mu _0}}}{{2\pi }}.\frac{i}{r}(\sqrt 2 + 1)\)
વિધાન $- 2$ : સ્થિત ચુંબકીયક્ષેત્ર ગતિ કરતાં વિજભારિત કણ પર ચુંબકીયક્ષેત્રને લંબ દિશામાં બળ લગાવે છે.
વિધાન $I$ :બાયો-સાર્વટનો નિયમ પ્રવાહ ધરાવતા સુવાહકના ફક્ત અતિસુક્ષ્મ વિદ્યુતખંડ $(Idl)$ ને કારણે ઉત્પન્ન ચુંબકીય ક્ષેત્રની તીવ્રતાનું સૂત્ર આપે છે.
વિધાન $II$ :બાયો-સાર્વટનો નિયમ વીજભાર $q$ માટે કુલંબના પ્રતિવર્ગના નિયમ જેવો જ છે, કે તેમાં પ્રથમ એ અદિશ ઉદગમ $Idl$ ને કારણે ઉત્પન્ન ક્ષેત્ર સાથે સંકળાયેલ છે જ્યારે પછીનો એ સદિશ ઉદગમ $q$ ને કારણે ઉત્પન્ન ક્ષેત્ર સાથે સંકળાયેલ છે.
ઉપરોક્ત વિધાનોનાં સંદર્ભમાં નીચે આપેલા વિકલ્પોમાંથી સૌથી યોગ્ય વિક્લ્પ પસંદ કરો.