\(E_1^o\, = \,0.15\,\,V;\) \(\Delta G_1^o\, = \, - \,{n_1}E_1^oF\)
\(C{u^{2 + }}\, + \,2e\, \to \,Cu\)
\(E_2^o\, = \,0.34\,V;\) \(\Delta G_2^o\, = \, - \,{n_2}E_2^oF\)
On subracting eq.\((i)\) from eq. \((ii)\) we get
\(C{u^ + }\, + \,{e^ - }\, \to \,Cu;\) \(\Delta {G^o}\, = \,\Delta G_2^o\, - \,\Delta G_1^o\,\)
\( - n{E^o}F\, = \, - \,({n_2}{E^o}F\, - \,{n_1}E_1^oF)\)
\({E^o}\, = \,\frac{{\,{n_2}{E^o}F\, - \,{n_1}E_1^oF}}{{nF}}\)
\( = \,\frac{{\,2 \times 0.34 - 0.15}}{1}\)
\(=\,0.53\,V\)
$Zn | Zn ^{2+}(0.1\, M ) \| Ag ^{+}(0.01 \,M )| Ag$
[આપેલ $: E_{Z n^{+2}/Z_{n}}^{0}=-0.76 \,V ; E _{A g^{+} / A_{ g }}^{0}=+0.80 \,V ; \frac{2.303 RT }{ F }=0.059$]
${Zn}\left|{Zn}^{2+}({aq}),(1 {M}) \| {Fe}^{3+}({aq}), {Fe}^{2+}({aq})\right| {Pt}({s})$
કોષ પોટેન્શિયલ $1.500\, {~V}$ પર ${Fe}^{3+}$ આયન તરીકે હાજર કુલ આયનનો અપૂર્ણાંક, ${X} \times 10^{-2}$ છે. $X$ નું મૂલ્ય $.....$ (નજીકના પૂર્ણાંકમાં) છે.
$\left(\right.$ આપેલ છે: $\left.E_{{Fe}^{3+} / {Fe}^{2+}}^{0}=0.77\, {~V}, {E}_{{Zn}^{2+} / {Zn}}^{0}=-0.76 \,{~V}\right)$
