\(E_1^o\, = \,0.15\,\,V;\) \(\Delta G_1^o\, = \, - \,{n_1}E_1^oF\)
\(C{u^{2 + }}\, + \,2e\, \to \,Cu\)
\(E_2^o\, = \,0.34\,V;\) \(\Delta G_2^o\, = \, - \,{n_2}E_2^oF\)
On subracting eq.\((i)\) from eq. \((ii)\) we get
\(C{u^ + }\, + \,{e^ - }\, \to \,Cu;\) \(\Delta {G^o}\, = \,\Delta G_2^o\, - \,\Delta G_1^o\,\)
\( - n{E^o}F\, = \, - \,({n_2}{E^o}F\, - \,{n_1}E_1^oF)\)
\({E^o}\, = \,\frac{{\,{n_2}{E^o}F\, - \,{n_1}E_1^oF}}{{nF}}\)
\( = \,\frac{{\,2 \times 0.34 - 0.15}}{1}\)
\(=\,0.53\,V\)
$C{u_{(s)}} + 2A{g^ + }_{(aq)} \to C{u^{2 + }}_{(aq)} + 2A{g_{(s)}}$