\(C_{1}=\frac{\varepsilon_{0} A}{3}\)
If a slab of dielectric constant \(K\) is introduced between plates then
\(C=\frac{K \varepsilon_{0} A}{d}\) then \(C'_1 = \frac{{{\varepsilon _0}A}}{{2.4}}\)
\(\mathrm{C}_{1}\) and \({C'}_{1}\) are in series hence,
\(\frac{{{\varepsilon _0}A}}{3} = \frac{{{\text{k}}\frac{{{\varepsilon _0}A}}{3} \cdot \frac{{{\varepsilon _0}A}}{{2.4}}}}{{{\text{k}}\frac{{{\varepsilon _0}A}}{3} + \frac{{{\varepsilon _0}{\text{A}}}}{{2.4}}}}\)
\(3\, k=2.4 \,k+3\)
\(0.6\, \mathrm{k}=3\)
Hence, the dielectric constant of slap is given by,
\(k=\frac{30}{6}=5\)