$2AB_{2(g)} \rightleftharpoons 2AB_{(g)} + B_{2(g)}$
વિયોજન અંશ $x$ એ $1$ ની સાપેક્ષમાં નાનો છે, તો વિયોજન અંશ $x$ ની સંતુલન અયળાંક $K_p$ અને કુલ દબાણ $P$ સાથેના સંબંધની રજૂઆત ..........
$\text { Initial moles } \;\; 1 \quad \;\;\;\;\quad 0 \quad \quad \quad \quad 0$
At equil. $\quad 2(1-x)\quad \quad 2 x\quad \quad \quad x$
where, $x=$ degree of dissociation
Total moles at equilibrium
$=2-2 x+2 x+x=(2+x)$
$\text { So, } p_{A B 2}= \frac{2(1-x) p}{(2+x)}, p_{A B}=\frac{2 x p}{(2+x)}$
$p_{B 2}= \frac{x p}{(2+x)}$
$K_{p}=\frac{p_{A} s}{\left(p_{A}\right)^{2}\left(P_{B 2}\right)}$
$=\frac{\left(\frac{2 r p}{2+p}\right)^{2}\left[\left(\frac{x}{2+x}\right) p\right]}{\left[\left(\frac{2 a-x}{(2+x)}\right) p\right]}$
$=\frac{x^{3} p}{(2+x)(1-x)^{2}}$
$=\frac{x^{3} p}{2}[\cdots x < < < 1 \text { and } 2]$
$x =\left(\frac{2 K p}{p}\right)^{1 / 3}$
So, $(1-x) \approx ; 1(2+x) \approx 2$
$\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{O}_{3(\mathrm{~g})} \cdot \mathrm{K}_{\mathrm{P}}=2.47 \times 10^{-29} \text {. }$
(આપેલ : R = $\left.8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
[આપેલ : $R=0.082 \,L \,atm\, K ^{-1}\, mol ^{-1}$ ]
$(1) \,C_2H_{6(g)} $ $\rightleftharpoons$ $ C_2H_{4(g)} + H_{2(g)}$
$(2)\, N_{2(g)} + O_{2(g)} $ $\rightleftharpoons$ $ 2NO_{(g)}$
$(3) \,H_{2(g)} + I_{2(g)} $ $\rightleftharpoons$ $ 2HI_{(g)}$