Here, dv/dt is rate of change of velocity, v is velocity and t is time.
So, dimension of \(A=\left[L T^{-2}\right] /[T]=\left[L T^{-1}\right]\)
\(\therefore\) dimension of \(\mathrm{A}=\left[\mathrm{L} T^{-3}\right]\)
Dimension of \(\mathrm{B}=\left[\mathrm{L} T^{-2}\right] /\left[\mathrm{L} T^{-1}\right]=\left[\mathrm{T}^{-1}\right]\)
\(\therefore\) dimension of \(\mathrm{B}=\left[\mathrm{T}^{-1}\right]\)