Let when the combination of springs is compressed by force \(\mathrm{F}\). Spring \(A\) is compressed by \(x\). Therefore compression in spring \(\mathrm{B}\)
\(x_{B}=(8.75-x) c m\)
\(\mathrm{F}=300 \times x=400(8.75-x)\)
Solving we get, \(x=5 \mathrm{cm}\)
\(x_{B}=8.75-5=3.75 \mathrm{cm}\)
\(\frac{E_{A}}{E_{B}}=\frac{\frac{1}{2} k_{A}\left(x_{A}\right)^{2}}{\frac{1}{2} k_{B}\left(x_{B}\right)^{2}}=\frac{300 \times(5)^{2}}{400 \times(3.75)^{2}}=\frac{4}{3}\)
$(A)\;y= sin\omega t-cos\omega t$
$(B)\;y=sin^3\omega t$
$(C)\;y=5cos\left( {\frac{{3\pi }}{4} - 3\omega t} \right)$
$(D)\;y=1+\omega t+{\omega ^2}{t^2}$