\(M_X\,=\,\frac {3}{4}M_Y\) .... \((i)\)
The relative lowering of vapour pressure of two solution is
\({\left( {\frac{{\Delta P}}{P}} \right)_X}\, = \,m{\left( {\frac{{\Delta P}}{P}} \right)_Y}\)
But, the relative loering of vaoour pressure of solutin is directly proportional to the mole fraction of solution.
Given \(5\,molal\) solution , mans \(5\,molal\) of solute are dissolved in \(1\,kg\) (or \(1000\,g\)) of solvent.
The number of moles of solvent \(=\,\frac {1000\,g}{M}\)
The mole fraction of solution \(=\,\frac {5}{1000/M}\)
\(=M\times \,\frac {5}{1000}\)
hence \(M_X\times \frac {5}{1000}\) \(=\,m\times M_Y\times \frac {5}{1000}\) .... \((ii)\)
Substitute equation \((i)\) in equation \((ii)\)
\(\frac {3}{4}\times M_Y\times \frac {5}{1000}\) \(=\,m\times M_Y\times \frac {5}{1000}\)
\(m=\frac {3}{4}\)