\({\overrightarrow n _s} = {\hat n_1} + {\hat n_2}\) or
\(n_s^2 = n_1^2 + n_2^2 + 2{n_1}{n_2}\cos \theta \)
\( = 1 + 1 + 2\cos \theta \)
Since it is given that \({n_s}\) is also a unit vector, therefore \(1 = 1 + 1 + 2\cos \theta \)
\(⇒\) \(\cos \theta = - \frac{1}{2}\)
\(\therefore \theta = 120^\circ \)
Now the difference vector is \({\hat n_d} = {\hat n_1} - {\hat n_2}\) or
\(n_d^2 = n_1^2 + n_2^2 - 2{n_1}{n_2}\cos \theta \)
\( = 1 + 1 - 2\cos (120^\circ )\)
\(n_d^2 = 2 - 2( - 1/2) = 2 + 1 = 3\)
\( \Rightarrow \,\,{n_d} = \sqrt 3 \)