\(R_{1}=\frac{l}{\sigma_{1} A}\) ...\((i)\)
and that of the second wire is
\(R_{2}=\frac{l}{\sigma_{2} A}\) ....\((ii)\)
As they are connected in series, so their effective
resistance is
\(R_{s} =R_{1}+R_{2} \)
\(=\frac{l}{\sigma_{1} A}+\frac{l}{\sigma_{2} A}\) \( \quad(\text { using }(\mathrm{i}) \text { and (ii) })\)
\(=\frac{l}{A}\left(\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}\right)\) ....\((iii)\)
If \(\sigma_{\mathrm{eff}}\) is the effective conductivity of the combination, then
\(R_{s}=\frac{2 l}{\sigma_{\mathrm{eff}} A}\) ....\((iv)\)
Equating eqns. \((iii)\) and \((iv),\) we get
\({\frac{2 l}{\sigma_{\mathrm{eff}} A}=\frac{l}{A}\left(\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}\right)} \)
\({\frac{2}{\sigma_{\mathrm{eff}}}=\frac{\sigma_{2}+\sigma_{1}}{\sigma_{1} \sigma_{2}} \text { or } \sigma_{\mathrm{eff}}=\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}}\)
(કોપરની અવરોધકતા $=1.7 \times 10^{-8}\, \Omega \,{m}$, એલ્યુમિનિયમની અવરોધકતા $=2.6 \times 10^{-8}\, \Omega \,{m}$ લો)