\(\therefore \) At \(T_1\)
\([{W_1}] = nR{T_1}\,\ln \,\frac{V}{{{V_1}}} = nRT\,(\ln \,V - \ln \,{V_1})\)
\(Similarly\,at\,{T_2}\)
\([{W_2}] - nR{T_2}(\ln \,V - \ln \,{V_2})\)
\(\therefore \,{W_1} = nR{T_1}\ln \,V - nR{T_1}\,\ln \,{V_1}\)
\({W_2} = nR{T_2}\,\ln \,V - nR{T_2}\,\ln \,{V_2}\)
Slope of \({W_2} > \) Slope of \(W_1\)
As \(nR{T_2} > nR{T_1}({T_2} > {T_1})\)
\(\therefore \) The intercept of \(W_2\) is more negative than that of \(W_1\) because \(V_2 > V_1.\)
$2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}_2(\mathrm{~g}) 2 \mathrm{CO}_2(\mathrm{~g}), \Delta \mathrm{H}=-787 \mathrm{KJ} ; \mathrm{H}_2(\mathrm{~g})+$$\mathrm{H}_2 \mathrm{O}, \Delta \mathrm{H}=-286 \mathrm{KJ}$
$\frac{1}{2} \mathrm{O}_2 \mathrm{C}_2 \mathrm{H}_2(g)+\frac{5}{2} \mathrm{O}_2(g) \rightarrow 2 \mathrm{CO}_2(g)+\mathrm{H}_2 \mathrm{O}(I), \Delta H=-1310KJ$
$Cl_2(g) \rightarrow 2Cl(g),$ | $242.3\,kJ\,mol^{-1}$ |
$I_2(g) \rightarrow 2I(g),$ | $151.0\,kJ\,mol^{-1}$ |
$ICl(g) \rightarrow I(g)+Cl(g),$ | $211.3\,kJ\,mol^{-1}$ |
$I_2(s) \rightarrow I_2(g),$ | $62.76\,kJ\,mol^{-1}$ |
જો આયોડિન અને ક્લોરિનની પ્રમાણિત અવસ્થા $I_{2(s)}$ અને $Cl_{2(g)}$ હોય તો $ICl_{(g)}$ ની સર્જન એન્થાલ્પી ................. $\mathrm{kJ\,mol}^{-1}$ જણાવો.
$H _{2}+\frac{1}{2} O _{2} \rightarrow H _{2} O , \cdots \cdots( ii )$ $\Delta H =-\,287.3 \,kJ\,mol ^{-1}$
$2 CO _{2}+3 H _{2} O \rightarrow C _{2} H _{5} OH +3 O _{2} \cdots \cdots ( iii )$; $ \Delta H =1366.8 \,kJ\,mol ^{-1}$
$C _{2} H _{5} OH (1)$ માટે ની રચનાની પ્રમાણિત એન્થાલ્પી શોધો
$Zn\left( s \right) + C{u^{2 + }}\left( {aq} \right) \rightleftharpoons Z{n^{2 + }}\left( {aq} \right) + Cu\left( s \right)$
$300\,K$ એ પ્રમાણિત પ્રક્રિયા એન્થાલ્પી $\left( {{\Delta _r}{H^ - }} \right),\, kJ \,mol^{-1}$ માં કેટલા .............. $\mathrm{kJ}$ થશે?
$[R=8\,J\,K^{-1}\,mol^{-1}$ અને $F=96,000\,C\,mol^{-1}]$
$(i)$ $H_{(aq)}^+ + OH^-= H_2O_{(l)} ,$ $\Delta H = -X_1\,kJ \,mol^{-1}$
$(ii)$ $H_{2(g)} + \frac{1}{2}O_{2(g)} = H_2O_{(l)},$ $\Delta H = -X_2\,kJ \,mol^{-1}$
$(iii)$ $CO_{2(g)} + H_{2(g)} = CO_{(g)} + H_2O_{(l)},$ $\Delta H = -X_3\, kJ\, mol^{-1}$
$(iv)$ $ C_2H_{2(g)}+ \frac{5}{2} O_{2(g)} = 2CO_{2(g)} + H_2O_{(l)},$ $\Delta H = -X_4\,kJ \,mol^{-1}$
તો $H_2O_{(l)}$ સર્જનઉષ્મા કેટલી હશે ?