\({r_n} = {r_0}\left( {\frac{{{n^2}}}{Z}} \right)\) (\({r_0} = \) radius of first orbit of \({H_2}\)-atom)
If \({r_n} = {r_0}\) ==> \(n = \sqrt Z .\) For \(Be+++, Z = 4\) ==>\(n = 2.\)
વિધાન $I$ : હાઈડ્રોજન પરમાણુમાં જ્યારે ઈલેકટ્રોન નીચી ઊર્જા કક્ષા $\left( E _{1}\right)$ માંથી ઉચ્ચ ઊર્જા કક્ષા $\left(E_{2}\right)$ માં કૂદકો (સંક્રાંત) કરે છે ત્યારે ઉત્સર્જાતા વિકિરણની આવૃત્તિ $h f= E _{1}- E _{2}$ વડે આપી શકાય છે.
વિધાન $II$ : ઉચ્ય ઊર્જા કક્ષામાંથી નીચી ઊર્જ કક્ષામાં ઈલેકટ્રોનની સંક્રાંતિ, વિકિરણ આવૃત્તિ $f=\left( E _{2}- E _{1}\right) / h$ સાથે સંકળાયેલ છે.
આ શરતને બોહરની આવૃત્તિ શરત કહે છે.
નીચે આપેલા વિકલ્પોમાંથી સાચો વિકલ્પ પસંદ કરો.