If \(a\) is the acceleration produced in the block, then
\(ma = mg\sin\theta -f_k\)
(where \(f_k \) is force of kinetic friction)
\(= mg\sin0 -μ_k N\) \((as\ \ f_k. = μ_k N)\)
\(= mg\sin0 - μ_kmg\cos\theta\) \((as\ \ N = mgcos\theta)\)
\(a = g(\sin\theta - μ_k\cos\theta)\)
As \( g = 10 ms^{- 2}\) and \(0 = 30°\)
\(a = ( 10 ms^{- 2})(sin30^o -μ_kcos30^o)\) ..........\((i)\)
If \(s\) is the distance travelled by the block in time \(t\), then
\(S=\frac{1}{2} at^2\) \((u=0)\)
\(a=\frac{2s}{t^2}\)
But \(s=4.0 \ m\) and \(t=4.0 \ s\) (given)
\(a=\frac{2(4.0\ m)}{(4.0\ s)^2}=\frac{1}{2}\ ms^{-2}\)
Substituting this value of \(a\) in eqn. \((i)\), we get
\(\frac{1}{2}\ ms^{-2} =10\ ms^{-2}\left( \frac{1}{2}-\mu_k \frac{\sqrt3}{2} \right)\)
\(\frac{1}{10}=1-\sqrt3 \mu_k\) or \(\sqrt3 \mu_k=1-\frac{1}{10}=\frac{9}{10}=0.9\)
\(\mu_k =\frac{0.9}{\sqrt3}=0.5\)