\(\frac{X_{1}}{X_{2}}=e^{-1}\) \(=e^{\left(-\lambda_{1}+\lambda_{2}\right) t}\) ; \({e^{ - 1}} = {e^{ - (\lambda 1 - \lambda 2)t}}\)
\(\therefore t=\left|\frac{1}{\lambda_{1}-\lambda_{2}}\right|=\frac{1}{(5 \lambda-\lambda)}=\frac{1}{4 \lambda}\)
$(I)$ $_92^U{235} + _0n^1 \,X + 35^Br85 + 3 \,_0n^1$
$(II)$ $_3Li^6 + _1H^2 \,Y + _2He^4$
$(\sqrt{2}=1.414)$