Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
અનુક્રમે $2F$ અને $3F$ માનના બે બળો $P$ અને $Q$ એકબીજા સાથે $\theta $ કોણ બનાવે છે. જો બળ $Q$ ને બમણો કરીયે, તો તેમનું પરિણામ પણ બમણું થાય છે. તો આ ખૂણો $\theta $ કેટલો હશે?
વિધાન $I :$ બે બળો $(\overrightarrow{{P}}+\overrightarrow{{Q}})$ અને $(\overrightarrow{{P}}-\overrightarrow{{Q}})$, જ્યાં $\overrightarrow{{P}} \perp \overrightarrow{{Q}}$, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{1}$ ખૂણે હોય ત્યારે તેનું પરિણામી બળ $\sqrt{3\left({P}^{2}+{Q}^{2}\right)}$ મળે, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{2}$ ખૂણે હોય, ત્યારે તેનું પરિણામી $\sqrt{2\left({P}^{2}+{Q}^{2}\right)}$ મળે છે. આ માત્ર $\theta_{1}<\theta_{2}$ માટે શક્ય છે.
વિધાન $II :$ ઉપર આપેલ પરિસ્થિતીમાં $\theta_{1}=60^{\circ}$ અને $\theta_{2}=90^{\circ}$ હોય.
આકૃતિમાં ત્રણ સદિશો$\mathop {\,a}\limits^ \to \,,\,\mathop {\rm{b}}\limits^ \to \,\,$ અને $ \,\mathop {\rm{c}}\limits^ \to \,$આપેલી જ્યાં $R$ એ $PQ$ નું મધ્યબિંદુ છે તો નીચેના પૈકી કયો સંબંધ સાચો છે ?