\( = \frac{{{I_1}\omega _1^2}}{2}\left( {\frac{9}{8}} \right) = \frac{9}{{16}}{I_1}\omega _1^2\)
\({I_1}{\omega _1} + \frac{{{I_1}\omega { _1}}}{4} = \frac{{3{I_1}}}{2}\omega \,\,\,;\,\,\,\frac{5}{4}{I_1}{\omega _1} = \frac{{3{I_1}}}{2}\omega \)
\(\omega = \frac{5}{6}{\omega _1}\,\,\,\,\,\,\,\,\,\,;\,\,\,\,\,\,\,{E_f} = \frac{1}{2} \times \frac{{3{I_1}}}{2} \times \frac{{25}}{{36}}\omega _1^2\)
\( = \frac{{25}}{{48}}{I_1}\omega _1^2\)
\( \Rightarrow {E_f} - {E_i} = {I_1}\omega _1^2\frac{{25}}{{49}} - \frac{{ - 2}}{{48}}{I_2}\omega _1^2\)
\( = \frac{{25}}{{48}}{I_1}\omega _1^2\)
\( \Rightarrow {E_f} - {E_i} = {I_1}\omega _1^2\left( {\frac{{25}}{{48}} - \frac{9}{{16}}} \right) = \frac{{ - 2}}{{48}}{I_1}\omega _1^2\)
\( = \frac{{ - {I_1}\omega _1^2}}{{24}}\)