\( \Rightarrow \frac{{hc}}{{{\lambda _A}}} = {W_0} + {K_A}\) ..\(.(i)\) and \(\frac{{hc}}{{{\lambda _B}}} = {W_0} + {K_B}\) ...\((ii)\)
Subtracting \((i)\) from \((ii)\), \(hc\left[ {\frac{1}{{{\lambda _B}}} - \frac{1}{{{\lambda _A}}}} \right] = {K_B} - {K_A}\)
==> \(hc\left[ {\frac{1}{{{\lambda _B}}} - \frac{1}{{2{\lambda _B}}}} \right] = {K_B} - {K_A}\)
==>\(\frac{{hc}}{{2{\lambda _B}}} = {K_B} - {K_A}\) ...\((iii)\) From \((ii)\) and \((iii)\), \(2{K_B} - 2{K_A} = {W_0} + {K_B}\)
\( \Rightarrow {K_B} - 2{K_A} = {W_0}\)
\( \Rightarrow {K_A} = \frac{{{K_B}}}{2} - \frac{{{W_0}}}{2}\) which gives \({K_A} < \frac{{{K_B}}}{2}\).