Let us say that elongation in copper \(=x\)
Than elongation in steel \(=2-x\)
We know
\(\frac{F L}{A Y}=\Delta x\)
\(\because F, A, L\) are same only material is different We can say
\(\frac{1}{Y} \propto \Delta x\)
\(\frac{Y_2}{Y_1}=\frac{\Delta x_1}{\Delta x_2}\) \(\left\{\begin{array}{l}\text { Where } \\ Y_2=Y_{\text {steel }} \\ Y_1=Y_{\text {copper }} \\ \Delta x_1=\text { elongation in copper }=x \\ \Delta x_2=2-x\end{array}\right.\)
Substituting values
\(\frac{20 \times 10^{11}}{12 \times 10^{11}}=\frac{x}{2-x}\)
\(x=1.25 \,cm\)
So \(\Delta x_{\text {copper }}=1.25 \,cm , \Delta x_{\text {sleel }}=0.75 \,cm\)