Apparent frequency of sound heard by the observer from source is
\(n_1=\left(\frac{v-v_0}{v-v_s}\right) n\)
\(=\left(\frac{v-u}{v+v_s}\right) n\)
Apparent frequent of sound heard by the observe from source
\(n _2=\left(\frac{ v + v _0}{ v - v _0}\right) n\)
\(=\left(\frac{ v + u }{ v - v _{ s }}\right) n\)
\(\text { No. of beats }=8\)
\(n _2- n _{ l }=8\)
\(\left(\frac{ v + u }{ v - v _{ s }}\right) n -\left(\frac{ v - u }{ v + v _{ s }}\right) n =8 \quad v =300, v _{ s }=0, n =660\)
\(\Rightarrow\left(\frac{330+ u }{300-0}\right)(600)-\left(\frac{300- u }{330+0}\right) 660=8\)
\(\therefore \frac{2 \times 6604}{330}=8\)
\(4 u =8\)
\(u =2 .\)
$ {y_1} = {10^{ - 6}}\sin [100\,t + (x/50) + 0.5]\;m $
$ {y_2} = {10^{ - 6}}\cos \,[100\,t + (x/50)]\;m $
જ્યાં $x$ મીટરમાં હોય અને $t$ સેકન્ડમાં છે
(બંને ઉદગમની આવૃતિ $F_1= F_2=500\, Hz$ અને હવામાં ધ્વનિનો વેગ $=330\, m / s$ છે.)