\(3 T _{ y }=6 t\)
\(N _{1}^{\prime}= N _{2}^{\prime}\)
\(N _{1} e ^{-\lambda_{1} 6 t }= N _{2} e ^{-\lambda_{2} 6 t }\)
\(\frac{ N _{1}}{ N _{2}}= e ^{\left(\lambda_{1}-\lambda_{2}\right) 6 t }= e ^{\ln 2\left(\frac{1}{t}-\frac{1}{2 t }\right) \times 6 t }= e ^{(1 n 2) \times 3}= e ^{ ln 8}=8\)
\(\frac{ N _{1}}{ N _{2}}=\frac{8}{1}\)
$(i) \,A + B → C + \varepsilon$
$(ii)\, C → A + B + \varepsilon$
$(iii)\, D + E →F + \varepsilon$
$(iv)\, F →D + E + \varepsilon$