$\frac{1}{2}C{l_2}(g)\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}Cl(g)\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}$ $C{l^ - }(g)\xrightarrow{{{\Delta _{Hyd}}{H^\Theta }}}C{l^ - }(aq)$
તો $\frac{1}{2}C{l_2}(g)$ ના $Cl^-_{(aq)}$ માં રૂપાંતમાં ઊર્જાનો ફેરફાર ............. $\mathrm{kJ\,mol}^{-1}$ જણાવો.
$({{\Delta _{diss}}H_{C{l_2}}^\Theta } = 240\,kJ\,mol^{-1}, {{\Delta _{eg}}H_{C{l}}^\Theta }= -349 \,kJ\,mol^{-1},$${{\Delta _{Hyd}}H_{C{l}}^\Theta }= -381 \,kJ\,mol^{-1})$
$(i)$ $N_2H_4$$_{(l)}$ $+$ $2H_2O_2$$_{(l)}$ $\rightarrow$ $N_2$$_{(g)}$ $+$ $4H_2O$$_{(l)}$; $\Delta r{H_1}^ \circ = - 818 \,kJ/mol$
$(ii)$ $N_2H_4$$_{(l)}$ $+$ $O_2$$_{(g)}$ $\rightarrow$ $N_2$$_{(g)}$ $+$ $2H_2O$$_{(l)}$; $\Delta r{H_2}^ \circ = - 622 \,kJ/mol$
$(iii)$ ${H_2}_{(g)}\,\, $+$ \,\,\frac{1}{2}\,{O_2}_{(g)}\,\, \to \,\,{H_2}O_{(l)}\,\,\,;\,\,{\Delta }r{H_3}^ \circ \, = \,\, - 285\,\,kJ/mol$
(Given ${\Delta _{fus}}H = 6\, kJ\, mol^{-1}$ at $0\,^oC$,
$C_p(H_2O, l) =75.3\, J\, mol^{-1} \, K^{-1}$ ,
$C_p(H_2O, s) = 36.8\, J\, mol^{-1} \, K^{ -1}$ )