\(\frac{{{v_0}}}{2} = \,\,{v_0}\,\,\left( {1\,\, - \,\,{e^{\frac{{{t_s}}}{{R\,\, \times \,\,\frac{C}{2}}}}}} \right)\,\,.......\left( 2 \right)\)
\((1)\) અને \((2)\) પરથી \({e^{ - \frac{{{t_P}}}{{2Rc}}\,\,}} = \,\,{e^{ - \frac{{2{t_s}}}{{RC}}}}\)
\({t_s}\,\, = \,\,\frac{{{t_p}}}{4}\,\, = \,\,\frac{{10}}{4}\,\, = \,\,2.5\,\,\sec \)
$\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} Nm ^{2} C ^{-2}\right] $ નો ઉપયોગ કરો
($e=1.6 \times10^{-1}9\; C$,$m_e=9.11 \times 10^{-3}\;kg$)