\(\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}=\frac{\mathrm{C}_{2} \mathrm{C}_{3}+\mathrm{C}_{3} \mathrm{C}_{1}+\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}}\)
\(\Rightarrow\) \(C_{\mathrm{eq}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}}{\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{2} \mathrm{C}_{3}+\mathrm{C}_{3} \mathrm{C}_{1}}\)
\(C_{\mathrm{eq}}=\frac{C(2 C)(3 \mathrm{C})}{C(2 \mathrm{C})+(2 \mathrm{C})(3 \mathrm{C})+(3 \mathrm{C}) \mathrm{C}}=\frac{6}{11}\, \mathrm{C}\)
Charge on capacitors \(({C_1},{C_2}\& {C_3})\)
in series \(=\mathrm{C}_{\mathrm{eq}} \mathrm{V}=\frac{6 \mathrm{C}}{11} \mathrm{V}\)
Charge on capacitor \(C_{4}=C_{4} V=4 C V\)
\(\frac{\text { Charge on } \mathrm{C}_{2}}{\text { Charge on } \mathrm{C}_{4}}=\frac{\frac{6 \mathrm{C}}{11} \mathrm{V}}{4 \mathrm{CV}}=\frac{6}{11} \times \frac{1}{4}=\frac{3}{22}\)