ક્રમ પ્રક્મ માટે $\Delta G^o$ શોધો
.... .............$\mathrm{kJ} \mathrm{mol}^{-1}$
$2H^+ + 2e^- + \frac{1}{2}O_2\longrightarrow H_2O_{(l)} ; $
$E^o = +1.23\, V$
$Fe^{2+} + 2e^- \longrightarrow Fe_{(s)} ;\ E^o = -0.44\,V$
\( {2{H^ + } + 2{e^ - } + \frac{1}{2}{O_2}\, \longrightarrow \,\,{H_2}O(l)\,\,;\,\,\Delta G_2^o} \)
____________________________________________
\( Fe(s) + 2H^+ + \frac{1}{2} O_2 \longrightarrow Fe^{2+}+ H_2O \;\;; \;\; \Delta G_3^o\)
Applying, \(\Delta G_1^o + \Delta G_2^o = \Delta G_3^o\)
\(\Delta G_3^o = (-2F \times 0.44) + (-2F \times 1.23)\)
\(\Delta G_3^o = -(2 \times 96500 \times 0.44+ 2 \times 96500 \times 1.23)\)
\(\Delta G_3^o = -322310\, J\)
\(\Delta G_3^o= -322 \,KJ\)
$[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + e^{-1}\, ;$ $ E^o = -0.35\, V$
$Fe^{2+} \rightarrow Fe^{3+} + e^{-1}\ ;$ $E^o = -0.77\, V$