\(\ln k\left(s^{-1}\right)=14.34-\frac{1.25 \times 10^{4}}{T} K \ldots(i)\)
We know that,
\(\ln k\left(s^{-1}\right)=\ln A-\frac{E_{a}}{R T} \ldots( ii )\)
On comparing equation \((i)\) and \((ii)\), we get
\(\frac{E_{a}}{R}=1.25 \times 10^{4} \,K\)
\(\therefore E_{a}=1.25 \times 10^{4} K \times R\) \(cal\) \(K^{-1} mol ^{-1}\)
\(=1.25 \times 10^{4} K \times 2\) \(cal\) \(K^{-1} mol ^{-1}\)
\(\left[\because R=2 \operatorname{cal} K^{-1} mol ^{-1}\right]\)
\(=2.50 \times 10^{4}\) \(cal\) \(mol ^{-1}\)
Expt. No. | $(A)$ | $(B)$ | પ્રારંભિક દર |
$1$ | $0.012$ | $0.035$ | $0.10$ |
$2$ | $0.024$ | $0.070$ | $0.80$ |
$3$ |
$0.024$ |
$0.035$ | $0.10$ |
$4$ | $0.012$ | $0.070$ | $0.80$ |