$CH _3 N _2 CH _3( g ) \rightarrow CH _3 CH _3( g )+ N _2( g )$
આ એક પ્રથમક્રમ પ્રક્રિયા છે. $600\, K$ પર સમય સાથે આંશિક દબાણમાં વિવિધતા નીચે આપેલ છે. પ્રક્રિયાનો અર્ધ આયુષ્ય $\times 10^{-5}\, s$ છે. [નજીકનો પૂર્ણાંક]
$k =\frac{1}{ t } \ln \left(\frac{ P _{0}}{ P }\right)$
$\ln \left(\frac{ P _{0}}{ P }\right)= kt$
$t _{1 / 2}=\frac{\ln 2}{ k }=\frac{0.693}{3.465 \times 10^{4}}=2 \times 10^{-5}$
$\left( {{\rm{R}} = 8.3\;{\rm{Jmo}}{{\rm{l}}^{ - 1}}{{\rm{K}}^{ - 1}},\ln \left( {\frac{2}{3}} \right) = 0.4,\left. {{e^{ - 3}} = 4.0} \right)} \right.$