\(\therefore \) Force required just to move up \({F_{up}} = mg(\sin \theta + \mu \cos \theta )\)
Similarly for down ward motion a \( = g(\sin \theta - \mu \cos \theta )\)
\(\therefore \) Force required just to prevent the body sliding down \({F_{dn}} = mg(\sin \theta - \mu \cos \theta )\)
According to problem \({F_{up}} = 2{F_{dn}}\)
\(⇒\) \(mg(\sin \theta + \mu \cos \theta ) = 2mg(\sin \theta - \mu \cos \theta )\)
\(⇒\) \(\sin \theta + \mu \;\cos \theta = 2\sin \theta - 2\mu \;\cos \theta \)
\(⇒\) \(3\mu \cos \theta = \sin \theta \)
\(⇒\) \(\tan \theta = 3\mu \)
\(⇒\) \(\theta = {\tan ^{ - 1}}(3\mu ) = {\tan ^{ - 1}}(3 \times 0.25) = {\tan ^{ - 1}}(0.75)\)\( = 36.8^\circ \)
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right.$ અને $\left.\tan 37^{\circ}=3 / 4\right)$