The volume of this spherical shell \(=4 \pi r^{2} d r\).
The charge enclosed within shell
\(=\frac{Q r}{\pi R^{4}}\left[4 \pi r^{2} d r\right]\)
The charge enclosed in a sphere of radius \(r_{1}\) is
\(=\frac{4 Q}{R^{4}} \int_{0}^{r_{1}} r^{3} d r=\frac{4 Q}{R^{4}}\left[\frac{r^{4}}{4}\right]_{0}^{r}=\frac{Q}{R^{4}} r_{1}^{4}\)
\(\therefore \) The electric field at point \(p\) inside the sphere at a distance \(r_{1}\) from the centre of the sphere is
\(E=\frac{1}{4 \pi \epsilon_{0}}-\frac{\left[\frac{Q}{R^{4}} r_{1}^{4}\right]}{r_{1}^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{R^{4}} r^{2}\)
(Take $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} Nm ^{2} C ^{-2}$ )