$\Delta {S_{({x_2})}}\,\, = \,\,60\,$ જૂલ/મોલ કેલ્વિન, $\Delta {S_{({y_2})}}\,\, = \,\,40$ જૂલ/મોલ કેલ્વિન $\Delta {S_{(x{y_3})}}\,\, = \,\,50\,$ જૂલ/મોલ કેલ્વિન
હોય, તો સંતુલને તાપમાને ......$K$
\(\Delta S{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} \Delta {S_{(xy_3)}} - {\mkern 1mu} {\mkern 1mu} \left[ {\frac{1}{2}\Delta {S_{(x_2)}}{\mkern 1mu} + {\mkern 1mu} {\mkern 1mu} \frac{3}{2}\Delta {S_{({y_2})}}{\mkern 1mu} } \right]{\mkern 1mu} \)
\(\therefore {\mkern 1mu} {\mkern 1mu} \Delta S{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 50{\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} {\mkern 1mu} \left( {\frac{{60}}{2} + \frac{{3 \times 40}}{2}} \right){\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \)
\(\therefore {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Delta S{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 50 - (30 + 60)\)
\(\Delta S = -40\) જૂલ / મોલ . કેલ્વિન સંતુલને \(\Delta G = 0\)
\(\therefore \Delta H = T \Delta S\)
\(\therefore T\,\, = \,\frac{{\Delta {\text{H}}}}{{\Delta {\text{S}}}}\,\) પરથી \(T\,\, = \,\,750\) કેલ્વિન મળે
(નજીકનો પૂર્ણાક) આપેલ : $R =8.3\,J\,K ^{-1}\,mol ^{-1}$