\(K=A e^{-E a / R T}\)
Where \(K \rightarrow\) rate contant.
\(\text { A } \rightarrow \text { Collision factor. }\)
\(E_{a} \rightarrow \text { Activation energy }\)
\(T \rightarrow\) Temperature on kelvin scale
Let \(K_{1} \;and\; K_{2}\) be rate constant of a reaction of temperatures \(T_{1}\;and\; T_{2}\)
Applying Arrhenius equation.
\(K_{1}=A e^{-E a / R T_{1}} \longrightarrow(1)\)
\(K_{2}=A e^{-E a / R T_{2}} \quad \longrightarrow(2)\)
\(\Rightarrow\) Taking natural log on both sides,
\(\ln K_{1}=\ln A-\frac{E_{a}}{R T_{1}} \quad \longrightarrow \dots (1)\)
\(i n K_{2}=\ln A-\frac{E_{a}}{R T_{2}} \quad \longrightarrow \dots (2)\)
Now substracting \((1)\) from \((2)\)
\(i n K_{2}-i n K_{1}=\frac{-E_{a}}{R T_{2}}+\frac{E_{a}}{R T_{1}}\)
\(\Rightarrow \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{E_{a}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]\)
OR
\(\Rightarrow \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-E_{a}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]\)
$2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$
પ્રક્રિયાનો ક્રમ................ છે.
$1$ | $2$ | $3$ | |
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$S.\ No$ સમય/s કુલ દબાણ/(atm)
$1.$ $0$ $0.1$
$2.$ $115$ $0.28$
પ્રક્રિયાનો વેગ અચળાંક _______________$\times 10^{-2} \mathrm{~s}^{-1}$ (નજીકનાં પૂનાંકમાં)