\(K=A e^{-E a / R T}\)
Where \(K \rightarrow\) rate contant.
\(\text { A } \rightarrow \text { Collision factor. }\)
\(E_{a} \rightarrow \text { Activation energy }\)
\(T \rightarrow\) Temperature on kelvin scale
Let \(K_{1} \;and\; K_{2}\) be rate constant of a reaction of temperatures \(T_{1}\;and\; T_{2}\)
Applying Arrhenius equation.
\(K_{1}=A e^{-E a / R T_{1}} \longrightarrow(1)\)
\(K_{2}=A e^{-E a / R T_{2}} \quad \longrightarrow(2)\)
\(\Rightarrow\) Taking natural log on both sides,
\(\ln K_{1}=\ln A-\frac{E_{a}}{R T_{1}} \quad \longrightarrow \dots (1)\)
\(i n K_{2}=\ln A-\frac{E_{a}}{R T_{2}} \quad \longrightarrow \dots (2)\)
Now substracting \((1)\) from \((2)\)
\(i n K_{2}-i n K_{1}=\frac{-E_{a}}{R T_{2}}+\frac{E_{a}}{R T_{1}}\)
\(\Rightarrow \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{E_{a}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]\)
OR
\(\Rightarrow \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-E_{a}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]\)
નીચે આપેલ પ્રક્કિયાવિધી દ્વારા થઈ રહી છે.
$NO + Br _2 \Leftrightarrow NOBr _2 \text { (fast) }$
$NOBr _2+ NO \rightarrow 2 NOBr$(ધીમી)
પ્રક્રિયાનો સમગ્ર ક્રમ $........$