$\left( {{\rm{R}} = 8.3\;{\rm{Jmo}}{{\rm{l}}^{ - 1}}{{\rm{K}}^{ - 1}},\ln \left( {\frac{2}{3}} \right) = 0.4,\left. {{e^{ - 3}} = 4.0} \right)} \right.$
\(\ln \left(\frac{60}{40}\right)=\frac{-\operatorname{Ea}}{8.3}\left[\frac{1}{400}-\frac{1}{300}\right]\)
\(\mathrm{E}=0.4 \times 1200 \times 8.3\)
\(=3.984\; \mathrm{kJ} / \mathrm{mole}\)
$1$. $[A]$ $0.1$, $[B]$ $0.1 - $ પ્રારંભિક દર $ \rightarrow 7.5 \times 10^{-3}$
$2$. $[A]$ $0.3$, $[B]$ $0.2 -$ પ્રારંભિક દર $ \rightarrow 9.0 \times 10^{-2}$
$3$. $[A]$ $0.3$, $[B]$ $0.4 -$ પ્રારંભિક દર $ \rightarrow 3.6 \times 10^{-1}$
$4$. $[A]$ $0.4$, $[B]$ $0.1 -$ પ્રારંભિક દર $ \rightarrow 3.0 \times 10^{-2}$