$\left[\right.$ આપેલ છે $: {h}=6.63 \times 10^{-34} \,{Js}$ અને $\left.{c}=3.0 \times 10^{8} \,{~ms}^{-1}\right]$
$50=\frac{{n} \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{795 \times 10^{-9}}$
${n}=1998.49 \times 10^{17}[{n}={no} .$ of photons per second $]$
$=1.998 \times 10^{20}$
$\simeq 2 \times 10^{20}$
$={x} \times 10^{20}$
${x}=2$
$A. \;n =3, l=2, m _{1}=1, m _{ s }=+1 / 2$
$B.\; n =4, l=1, m _{1}=0, m _{ s }=+1 / 2$
$C. \;n =4, l=2, m _{1}=-2, m _{ s }=-1 / 2$
$D. \;n =3, l=1, m _{1}=-1, m _{ s }=+1 / 2$
વધતી ઊર્જાનો સાચો ક્રમ શોધો.