\(\begin{array}{l}
\,\,\left[ {\mu = \frac{{\sqrt 3 }}{5}\,given} \right]\,\\
= \frac{{\sin \,{{30}^{ \circ \,}} + \frac{{\sqrt 3 }}{5} - \cos \,{{30}^ \circ }}}{{\sin \,{{60}^ \circ } - \frac{{\sqrt 3 }}{5}\cos \,{{60}^ \circ }}}\\
= \frac{{\frac{1}{2} + \frac{{\sqrt 3 }}{5} \times \frac{{\sqrt 3 }}{2}}}{{\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 3 }}{5} \times \frac{1}{2}}}
\end{array}\)
\(\begin{array}{l}
= \frac{{\frac{1}{2}\left( {1 + \frac{3}{5}} \right)}}{{\frac{{\sqrt 3 }}{5}\left( {1 - \frac{1}{5}} \right)}} = \frac{{\frac{1}{2} \times \frac{8}{5}}}{{\frac{{\sqrt 3 \times 4}}{{10}}}}\\
= \frac{{\frac{8}{{10}}}}{{\frac{{\sqrt 3 \times 4}}{{10}}}} = \frac{8}{{\sqrt 3 \times 4}} = \frac{2}{{\sqrt 3 }}
\end{array}\)