\((\mu - 1) A + (\mu' - 1) A' = 0 \)
\( \Rightarrow (1.65 - 1) 15° + (1.52 - 1) A' = 0\)
\( \Rightarrow \,\,A'\,\, = \,\,\frac{{ - 0.65\,\, \times \,\,\,15}}{{0.52}}\,\,\, = \,\, - {18.75^ \circ }\)
ઋણ નિશાની બતાવે છે કે બે પ્રિઝમને વિરુદ્ધમાં જોડવા જોઈએ.
ચોખ્ખુ કોણીય વિયોજન (અંતર)
\(({\mu _v} - {\mu _r})\,\,A\,\, + \) \(\,(\mu _v'\, - \,\,\,\mu _r')\,\,A'\) \( = \,\,\omega \,\,(\mu - 1)\,\,A\,\, + \,\,\omega '\,\,(\mu ' - 1)\,\,A'\,\,\)
\( = \,\,0.03\,\,(1.65\,\, - \,\,1)\,\,{15^ \circ }\,\, + \,\,0.02\,\,(1.52\,\, - \,\,1)\,\,( - {18.75^ \circ })\,\,\)
\( = \,\,0.2925\,\, - \,\,0.195\,\, \)
\(= \,\,{0.0975^ \circ }\)