[આપેલ: $\ln 10=2.3$$R =8.3\, J \, K ^{-1}\, mol ^{-1}$]
\(\operatorname{\ell n}\left(\frac{ K _{2}}{ K _{1}}\right)=\frac{532611}{8.3}\times\left(\frac{10}{310 \times 300}\right)\)
where \(K _{2}\) is at \(310 \,K\) and \(K _{1}\) is at \(300 \,K\) \(\ln \left(\frac{ K _{2}}{ K _{1}}\right)=6.9\)
\(=3 \times \ell n 10\)
\(\ell n \frac{ K _{2}}{ K _{1}}=\ell n 10^{3}\)
\(K _{2}= K _{1} \times 10^{3}\)
\(K _{1}= K _{2} \times 10^{3}\)
So \(K=1\)

${A}+{B} \rightarrow {M}+{N}$ $......$ ${kJ} {mol}^{-1}$ બરાબર છે. (નજીકના પૂર્ણાંકમાં)
| $p ( mm Hg )$ | $50$ | $100$ | $200$ | $400$ |
| સાપેક્ષ $t _{1 / 2}( s )$ | $4$ | $2$ | $1$ | $0.5$ |
પ્રક્રિયાનો ક્રમ શોધો.