\({V_{1}^{2}=\omega^{2}\left(a^{2}-x_{1}^{2}\right)}...(i)\)
\({V_{2}^{2}=\omega^{2}\left(a^{2}-x_{2}^{2}\right)}...(ii)\)
From equations \((i)\) and \((ii),\) we get
\(V_{1}^{2}-V_{2}^{2}=\omega^{2}\left(x_{2}^{2}-x_{1}^{2}\right)\)
\(\omega=\sqrt{\frac{V_{1}^{2}-V_{2}^{2}}{x_{2}^{2}-x_{1}^{2}}} \)
\(T=2 \pi \sqrt{\frac{x_{2}^{2}-x_{1}^{2}}{V_{1}^{2}-V_{2}^{2}}}\)