\(i=\frac{E}{R_{2}}\left[1-e^{-R_{2} t / L}\right] \Rightarrow \frac{d i}{d t}=\frac{E}{R_{2}} \cdot \frac{R_{2}}{L} e^{-R_{2} t / L}=\frac{E}{L} e^{-\frac{R_{2} t}{L}}\)
Hence, potential drop across
\(\mathrm{L}=\left(\frac{E}{L} e^{-R_{2} t / L}\right) L=E e^{-R_{2} t / L}=12 e^{-\frac{2 t}{400 \times 10^{-3}}}\)
\(=12 \mathrm{e}^{-5 \mathrm{t}}\, \mathrm{V}\)