\(y=A \sin (\omega t-k x)\)
Wave velocity, \(v=\frac{\omega}{k}\) \(...(i)\)
Particle velocity, \(v_{p}=\frac{d y}{d t}=A \omega \cos (\omega t-k x)\)
Maximum particle velocity, \(\left(v_{p}\right)_{\max }=A \omega\) \(...(ii)\)
According to the given question
\({v=\left(v_{p}\right)_{\max }}\)
\({\frac{\omega}{k}=A \omega}\) \((Using\,(i)\,and\,(ii))\)
\(\frac{1}{k}=A \quad\) or \(\quad \frac{\lambda}{2 \pi}=A \quad\left(\because \quad k=\frac{2 \pi}{\lambda}\right)\)
\(\lambda=2 \pi A\)
$y_1=5 \sin 2 \pi(75 t-0.25 x)$
$y_2=10 \sin 2 \pi(150 t-0.50 x)$
છે. આ બે તરંગોની તીવ્રતાનો ગુણોત્તર $\frac{I_1}{I_2}$ કેટલો છે.
${y_1} = 0.05\,\cos \,\left( {0.50\,\pi x - 100\,\pi t} \right)$
${y_2} = 0.05\,\cos \,\left( {0.46\,\pi x - 92\,\pi t} \right)$
તો તેનો વેગ $m/s$માં કેટલો મળે?