એક મિટર સ્કેલ નું સમતોલન $40 \,cm$ પર છે જ્યારે $10\, g$ અને $20 \,g$ ના પદાર્થને $10 \,cm$ અને $20\, cm$ પર મૂકેલા છે તો મિટર સ્કેલનું વજન ...... $g$ હશે ?
Medium
Download our app for free and get started
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m$ દ્રવ્યમાનનો એક કણ સમાન ઝડપ $v$ થી $a$ બાજુ ધરાવતા ચોરસની બાજુ પર $x-y$ સમતલમાં ફરે છે. તો નીચે આપેલ વિધાનોમાંથી કયું વિધાન મૂળબિંદુની ફરતે કોણીય વેગમાન $\vec L$ માટે ખોટું છે?
એક $20\, g$ દળ ધરાવતા કણને આકૃતિમાં દર્શાવ્યા અનુસાર બિંદુ $B$ થી $h$ ઊંચાઈ એ આવેલા બિંદુ $A$ આગળથી $5\, m/s$ જેટલા પ્રારંભિક વેગ સાથે મુક્ત કરવામાં આવે છે. કણ ઘર્ષણ રહિત સપાટી પર સરકે છે. કણ જ્યારે બિંદુ $B$ આગળ પહોંચે છે, ત્યારે તેનું $O$ ની સાપેક્ષે કોણીય વેગમાન ....... $kg - m^2/s$ થશે.
મોટરને બંધ કરવામાં આવે ત્યારે, $M kg$ દળ અને $R$ મીટર ત્રિજ્યાની એક તકતી $\omega \,rad / s$ ની કોણીય ઝડપે ભ્રમણ કરે છે. અક્ષીય ધર્ષણને અવગણતા, $t$ સમય માં, વ્હીલને સ્થિર કરવા માટે વ્હીલ પર સ્પર્શકીય રીતે કેટલું બળ લગાડવું જોઈએે ?
એક નિયમિત વર્તુળાકાર ચક્ર પર લાગતું અચળ ટોર્ક $4$ સેકંડ માં તેનાં કોણીય વેગમાનને $A_0$ થી $4 A_0$ માં પરિવર્તીત કરે છે. તો આ ટોર્ક નું મૂલ્ય કેટલું હશે?
$2\ meter$ બાજુવાળા ચોરસના ખૂણા પર $m$ દળના કણો મૂકેલા છે.જો તેમના વિકર્ણના છેદનબિંદુને ઉગમબિંદુ લેવામાં આવે તો ચોરસના દ્રવ્યમાન કેન્દ્રના યામ શું થાય?
એક બળ $\vec{F}=(2 \hat{i}+3 \hat{j}-5 \hat{k}) \,N$ બિંદુ $\vec{r}_1=(2 \hat{i}+4 \hat{j}+7 \hat{k}) \,m$. ઉપર લાગુ કરવામાં આવે છે. તો બિંદુ $\vec{r}_2=(\hat{i}+2 \hat{j}+3 \hat{k}) \,m$ ને અનુલક્ષીને બળ વડે ઉદભવતું ટોર્ક ............ $Nm$ હશે ?
પૃષ્ઠને લંબ એવા કેન્દ્રમાંથી પસાર થતી અક્ષને અનુલક્ષીને $I_1$ જડત્વની ચાકમાત્રા ધરાવતી તકતી આ અક્ષને અનુલક્ષીને $\omega$ જેટલા કોણીય વેગથી ભ્રમણ કરે છે. હવે, પૃષ્ઠને લંબ એવા કેન્દ્રમાંથી પસાર થતી અક્ષને અનુલક્ષીને $I_2$ જેટલી જડત્વની ચાકમાત્રા ધરાવતી બીજી તકતી આ તકતી પર મૂકવામાં આવે, તો આ બંને તકતીનો સંયુક્ત કોણીય વેગ કેટલો હશે ?