\(Y \) - દિશામાં રેખીય વેગમાનનું સંરક્ષણ \(0 = mv_1sin \theta _1 - mv_2sin \theta _2 ⇒ 0 = v_1sin \theta_1 - v_2sin \theta_2 ………(ii)\)
ગતીઉર્જા નું સરક્ષણ \(\,\frac{{\text{1}}}{{\text{2}}}mu_1^2\,\, = \,\,\frac{1}{2}mv_1^2\,\, + \,\,\frac{1}{2}mv_2^2\,\,\,\,\, \Rightarrow \,\,\,\,\,u_1^2\,\, = \,\,v_1^2\,\, + \,\,v_2^2\,\,\,\,\,.........(iii)\)
\((i)^2 + (ii)^2 \) પરથી,
\( \Rightarrow \,\,{u_1}^2\,\, + \,\,0\,\, = \,\,{v_1}^2{\cos ^2}{\theta _1}\, + \,\,{v_2}^2{\cos ^2}{\theta _2}\, + \,\,2{v_1}{v_2}\,\cos {\theta _1}\,\cos {\theta _2}\,\, + \,\,{v_1}^2{\sin ^2}{\theta _1}\, + \,\,{v_2}^2{\sin ^2}{\theta _2}\, - \,\,2{v_1}{v_2}\sin {\theta _1}\sin {\theta _2}\)
\( \Rightarrow \,\,{u_1}^2\, = \,\,{v_1}^2({\cos ^2}{\theta _1}\, + \,\,{\sin ^2}{\theta _1})\,\, + \,\,{v_2}^2\,({\cos ^2}{\theta _2}\, + \,\,{\sin ^2}{\theta _2})\,\, + \,\,2{v_1}{v_2}(\cos {\theta _1}\,\cos {\theta _2}\, - \,\,\sin {\theta _1}\,\sin {\theta _2})\)
\( \Rightarrow \,u_1^2\, = \,\,v_1^2\, + \,\,v_2^2\, + \,\,2{v_1}{v_2}\,\cos \,({\theta _1}\, + \,\,{\theta _2})\,\,\,\,\,\,\{ \,\,\because \,\,{u_1}^2\, = \,\,{v_1}^2\, + \,\,{v_2}^2\,\,\} \)
\( \Rightarrow \,\,\cos \,({\theta _1}\, + \,\,{\theta _2})\,\, = \,\,0\,\, \Rightarrow \,\,{\theta _1}\, + \,\,{\theta _2}\,\, = \,\,{90^ \circ }\)
1. તંત્રના કણોનું રેખીય વેગમાન શૂન્ય હોય છે.
2. તંત્રના કણોની કુલ ગતિ-ઊર્જા શૂન્ય હોય છે.