Integrating both sides, \(\int {\frac{{dv}}{{6 - 3v}}} = \int {dt} \)
\(⇒ \frac{{{{\log }_e}(6 - 3v)}}{{ - 3}} = t + {K_1}\)
\(⇒ {\log _e}(6 - 3v) = - 3t + {K_2}\)…(i)
At \(t = 0,\;v = 0\)
\(\therefore {\log _e}6 = {K_2}\)
Substituting the value of \({K_2}\) in equation (i)
\({\log _e}(6 - 3v) = - 3t + {\log _e}6\)
\(⇒ {\log _e}\left( {\frac{{6 - 3v}}{6}} \right) = - 3\,t\) \(⇒\) \({e^{ - 3t}} = \frac{{6 - 3v}}{6}\)
\(⇒ 6 - 3v = 6{e^{ - 3\,t}}\) \(⇒\) \(3v = 6(1 - {e^{ - 3\,t}})\)
\(⇒ v = 2(1 - {e^{ - 3\,t}})\)
\(\therefore {v_{{\rm{terminal}}}} = 2\;m/s\) (When \(t = \infty \)).
Acceleration \(a = \frac{{dv}}{{dt}} = \frac{d}{{dt}}\left[ {2\left( {1 - {e^{ - 3\;t}}} \right)} \right] = 6{e^{ - 3\,t}}\)
Initial acceleration =\(6\;m/{s^2}\).