\(\Rightarrow Er ^{2}=4 \pi G \int \limits_{0}^{ r } \rho_{0}\left(1-\frac{ r ^{2}}{ R ^{2}}\right) r ^{2} dr\)
\(\Rightarrow E =4 \pi G \rho_{0}\left(\frac{ r ^{3}}{3}-\frac{ r ^{5}}{5 R ^{2}}\right)\)
\(\frac{ d E }{ dr }=0 \therefore r =\sqrt{\frac{5}{9}} R\)