Initial number of atoms, \(N_0\) \(N\)
Number of atoms after time \(t\) \(N\) \(N_0-N\)
As per question
\(\frac{N}{{{N_0} - N}} = \frac{1}{7} \Rightarrow 7N = {N_0} - N\) or \(8 N=N_{0}\)
\({\frac{N}{N_{0}}=\frac{1}{8}}\)
As \(\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}\) where \(n\) is the no. of half lives
\(\therefore \quad \frac{1}{8} = {\left( {\frac{1}{2}} \right)^n}\) or \({\left( {\frac{1}{2}} \right)^3} = {\left( {\frac{1}{2}} \right)^n}\)
\(\therefore n=3\)
\(n=\frac{t}{T_{1 / 2}} \text { or } t=n T_{1 / 2}=3 \times 20 \text { years }=60 \text { years }\)
Hence, the age of rock is \(60\) years.
$4\,{\,_1}{H^1}\, \to \,{\,_2}H{e^4} + 2\,{\,_1}{e^0}\, + \,\,2\,v\,\, + 26\,\,MeV\,\,$