\(B E=\Delta m c^{2}\)
From the above discussion, it is clear that the mass of nucleus must be less than the sum of the masses of the constituent neutrons and protons. We can then write
\(\Delta m=Z m_{p}-N m_{n}-m(A, Z)\)
where \(m(A,\,Z)\) is the mass of the atom of mass number \(A\) atomic number \(Z\). Hence, the binding energy of nucleus is
\(B E=\left[Z m_{p}+N m_{n}-m(A, Z)\right] c^{2}\)
\(B E=\left[Z m_{p}+(A-Z) m_{n}-m(A, Z)\right] c^{2}\)
$A\xrightarrow{\alpha }{{A}_{1}}\xrightarrow{\beta }{{A}_{2}}\xrightarrow{\alpha }{{A}_{3}}\xrightarrow{\gamma }{{A}_{4}}$