\(\frac{N_{0}}{3}=N_{0} e^{-\lambda t_{2}}\) .... \((i)\)
Number of undecayed atom after time \(t_{1};\)
\(\frac{2 N_{0}}{3}=N_{0} e^{-\lambda t_{1}}\) .... \((ii)\)
From \((i)\), \(e^{-\lambda t_{2}}=\frac{1}{3}\)
\(\Rightarrow \quad-\lambda t_{2}=\log _{e}\left(\frac{1}{3}\right)\) .... \((iii)\)
From \((ii)\) \(-e^{-\lambda t_{2}}=\frac{2}{3}\)
\(\Rightarrow \quad-\lambda t_{1}=\log _{\mathrm{e}}\left(\frac{2}{3}\right)\) .... \((iv)\)
Solving \((iii)\) and \((iv)\), we get \(t_{2}-t_{1}=20 \mathrm{\,min}\)
$4\,{\,_1}{H^1}\, \to \,{\,_2}H{e^4} + 2\,{\,_1}{e^0}\, + \,\,2\,v\,\, + 26\,\,MeV\,\,$